The wealth of Cypro-Archaic sculpture recovered from the Persian siege ramp forms one of the most interesting and important find complexes excavated at Kouklia/Palaepaphos. On the advice of Hector Catling, Veronica Wilson (as she then was) was persuaded to take over the task of publishing this find group. She came to Kouklia for the first time in 1969 to inspect the material (‘my stones’, as she always used to say), and returned for many seasons. In December 1974 she joined the staff of the Greek and Roman Department of the British Museum, but was liberally given leave to pursue the study of the Cypro-Archaic sculpture of Paphos. While systematizing and cataloguing the material, sitting on the site or in the courtyard of the Manor House that served as headquarters of the dig (Fig. 1), Veronica developed an interest in the problems presented by the conduct of the siege and its possible reconstruction. Inter alia, she conducted a vivid three-cornered correspondence with E. W. Marsden, J. Boardman and V. Karageorghis on the stone missiles found on the site. Such thoughts finally motivated her to commission a reconstruction of the siege of Paphos, drawn by Susan Bird, for the new A.G. Leventis Gallery of Cypriot Antiquities in the British Museum in 1987.

Paphos offers interesting opportunities to study the problems posed by this type of reconstruction. On the one hand, a considerable part of the siege works of 498 BC are fairly well preserved on Site KA at Paphos. On the other hand, four different artists drew reconstructions of the siege operations between 1953 and 2005, documenting different stages of excavation as well as exhibiting different approaches (Table 1). This set of drawings allow us to identify the elements serving as the base or the inspiration for the reconstruction, to observe the way they are being combined, and to discover subtle reciprocal influences.

I. The evidence

Pictorial reconstructions of siege operations generally rest on a multi-faceted factual base. They combine three different levels of information and inspiration: the archaeological evidence of the site itself; comparable archaeological and historical data; the wide realm of free imagination.

Evidence from the site

The North East Gate of Paphos, forming a key sector of the fortifications, represents a site of outstanding interest, both from the archaeological and the historical point of view. The site represents the rare example of an archaeological find context dated to the year: one of the few ancient sieges which can be reconstructed with remarkable precision. Its excavation revealed extensive and elaborate siege and counter-siege works which give a vivid picture of ancient siege warfare (Fig. 6). Together with Lachish, Masada and Doura-Europos, Paphos yields precious archaeological information on ancient siege warfare.

The analysis of the archaeological evidence enables us to follow the assault operations in detail. The area in front of the walls, from the Gate to a point beyond the Tower, was covered by the remains of a vast siege mound. The attacking army destroyed a late Cypro-Archaic sanctuary outside the walls and used the wreckage, together with loads of stones, boulders and soil, to fill in the dry ditch and to raise a siege ramp against the front of the city wall (Fig. 7). The ramp eventually reached a height of at least 7.4m from the bottom of the ditch. More than 1,000 fragments of votive monuments were recovered from it. Severe fighting during the construction of the siege ramp is attested by hundreds of bronze and iron weapons: 229 arrow-...
heads and 253 spear points. A bronze helmet of Corinthian type, of about 500 BC, and fragments of a rare iron helmet also recall the din of battle – representing the first Greek helmets found in a battle context. Four hundred and sixty-four roughly shaped limestone projectiles with one flattened side (of which 320 were found in the siege context) served as missiles hurled by hand from the parapet by the defenders. The siege ramp was undermined from inside the city by three tunnels cut through the soft conglomerate rock and passing underneath the city wall, a fourth rock-cut tunnel beneath the gate buildings, and two passages or saps dug through the berm (cf. Fig. 6). Open clay lamps in niches on the walls enabled the working parties to move in the dark; water jugs left on the floor testify to the thirst they suffered. The tunnels, 0.90–1.70m wide and 1.40–2.30m high, led to the bottom of the filled-in ditch. From there ramp material was removed through the tunnel and dumped near the entrance. The expanding cavity underneath the ramp was shored up with timber work, resting partially on mud-brick piers. Finally the supporting timbers were fired by means of some inflammable substance carried in large bronze cauldrons, thus causing a certain area of the ramp surface to collapse suddenly. The fire was so intense that the ramp above the cauldrons turned into a compact cone-shaped mass of calcined stone and lime. Both siege-mound and mine were the most formidable weapons of siege-craft borrowed by the Persians from the Assyrians (Appendix: Conspectus A1–2, at the end of the text), later adapted by the Greeks, and still in use in Crusader warfare. In the 6th century BC Lydian and Achaemenid armies employed ramps and mines in their siege operations. Ramps were erected by Croesus’ troops at Smyrna and by Harpagos’ forces in Ionia, Teos and Phocaea in particular. Mines were dug by the Lydian army at Ephesus, by Persian forces at Mileus, at Soloi in Cyprus, and at Barke in Libya. The purpose of ramps was to move forward wooden siege towers whose lower storey sheltered a ram, while archers firing from the top tried to sweep the defenders off the parapet. These siege tactics explain the counter-measures adapted by the Greek defenders of Paphos: the skilful use of mining in an attempt to damage ramps and towers. This offensive use of counter-siege-mines at Paphos seems so far unique. We cannot ascertain from the archaeological evidence how far the countermining operations succeeded in putting the siege towers out of action. Success of the defenders must at least have been limited. The excavation of the Gate showed that the assault parties fought their way through the narrow passage covered by the crossfire of the defenders on the gate bastions, and forced open and burnt the wooden gate doors. These siege and counter-siege operations occurred in a clearly defined stratigraphical context which can be dated to the very end of the 6th century BC. The archaeological evidence thus points to the Ionian Revolt, or rather its aftermath in Cyprus. The siege of Paphos represents part of the Persian operations of 498 BC: a specific event in the history of the city, barely recorded in a text but recovered from the earth. Herodotus refers to these operations in one brief sentence: ‘the Cypriot cities except for Salamis were being besieged ... Soloi held out longest; it fell only in the 5th month, after the Persians had undermined the walls all round’ (V, 115).

Comparable archaeological data
There is no specific literary evidence to aid the reconstruction of the Paphos siege, but there are abundant non-local sources of inspiration, namely comparable archaeological evidence and pictorial representations. Prominent parallels for siege warfare in the Cypro-Archaic period are presented by the Assyrian palace reliefs. They offer by far the largest number of illustrations of siege operations surviving from the ancient world. In this context, Lachish, in Palestine, represents a near-perfect case: both the actual siege ramp and the reliefs of Sennacherib depicting the siege in 701 BC (Appendix: Conspectus B) survive as a safe documentary base (Fig. 8). Indeed, inspiration for most elements of the Paphos drawings which cannot be based on archaeological evidence from the site, derive from Assyrian reliefs in general and from Lachish in particular. This is obvious from comparison, but there is also an actual link in the person of the artist Alan Sorrell. A few years before illustrating the Paphos siege for The Illustrated London News, he drew the – often reproduced – reconstruction of the siege of Lachish, exhibited in the British Museum Assyrian galleries (Fig. 9).

II. Evidence and reconstruction
The caption of Sorrell’s drawing in The Illustrated London News reads: “vividly reconstructed from newly discovered evidence”. How far do the reconstruction drawings conform to the archaeological evidence of the site – how far are they not supported or contradicted by it? How far are comparable archaeological data legitimately adapted as pictorial elements? How far are the rendering of people and their actions the result of free imagination? In discussing these questions, we shall confine ourselves to features which are crucial for the recreation of the tactical and technical conduct of the siege operations.

Reconstruction: evidence from the site
The earliest reconstruction was produced by Sorrell in 1952/53 (Table 1: Pt, Fig. 2). Drawn after only three seasons of excavation, it was necessarily based on incomplete evidence. The early stage of investigation explains a number of errors in the architectural features: The plan (and therefore the elevation) of the Gate was known only partially and drafted from the architectural features: The plan (and therefore the elevation) of the Gate was known only partially and drafted ashlars do not appear in the gate buildings before the 4th century. The battlements look somewhat exaggerated, reminiscent of elaborate Assyrian representations of ‘crenellated parapets and towers which were finally standardized in Late Assyrian times’ (cf. Appendix: Conspectus A1–2). Battlements of a less sophisticated form, as depicted on the François Vase or in the Trysa reliefs, would seem more appropriate.

The dramatic scene of rebuilding and heightening the fortifications is impressive, yet this section of the city wall was erected after the end of the siege. This scene also affords a good example of even small details being copied from Assyrian images: the figure of the man carrying stones up a ladder finds its exact counterpart in a relief from Nineveh (Appendix: Conspectus C).

This first visual reconstruction of the siege operations at Paphos suffers from a basic misconception regarding the function of the ramp. It is drawn on the assumption that it
served for an infantry attack only – an interpretation due to the advice of the excavators who at that time did not consider the possibility of siege-engines being employed on the ramp.27 Furthermore, the siege mound – extending correctly beyond the tower – appears definitely too high, compared with the parapet level.23 Inspired by Assyrian siege representations, Sorrell nonetheless introduced two battering rams. There is no tangible evidence for a battering-ram being used in front of the Gate, but this would have been possible according to the archaeological evidence, as the ramp did not bar the gate road. The position of the second engine, being dragged towards the city wall across the fields in the distance, seems slightly more fanciful. The shape of Sorrell's four-wheeled rams, retained in identical form by Bird (P2, Fig. 3), does not match any Assyrian relief (Appendix: Conspectus D).

The use of trees and brushwood to strengthen the Paphos ramp has often been supposed,24 and still forms a pictorial element in P3 and P4 (Figs 4, 5) (possibly also in P2). A number of Assyrian reliefs show tree trunks in the core of siege ramps, yet at Paphos the use of this method is disproved by the evidence.25 Opinions also differ about the question whether and in which way logs or stone slabs formed the surface of ramps (Appendix: Conspectus E).26 Yet despite its errors Sorrell's work had a lasting impact: in several respects his legacy is still discernible in later versions of the Paphos siege.

Bird's reconstruction (P2) dates from 1987 and represents the status of archaeological evidence at the end of the excavations. The plan and elevation of the Gate have been remodelled accordingly, showing a gate courtyard flanked by two massive bastions, closed at the front and the end by cross bastions. The only architectural elements still questionable are the battlements (slightly modified from P1 (Fig. 2) but still too elaborate), and the misplaced entrance to Tunnel 4 at the back of the Gate.

The representation of the ramp is more debatable. It is shown on a too narrow front, ending already at the tower; its curved access seems pure conjecture (or a misreading of P1 (Fig. 2)?) Here as well as in P3 (Fig. 4), the height of the ramp in relation to the parapet level contradicts the evidence and misrepresents the tactics of the attackers. The ramp must have reached a height of at least 6m above the foundation level of the city wall. The wall was 5.8m wide at the time of the siege; this would allow (even at a conservative estimate) a total height of c. 8–8.5m. In this case, the surface of the ramp would have been c. 2–2.5m lower than the top of the parapet. As siege-engines were between 3–4m high, this would have enabled the archers on their tower to attack the defenders on the wall, while the ram head was worked against the lower part of the city wall.

These conclusions seem to tally with the Assyrian siege reliefs. There battering rams often attack the lower parts of city walls (Appendix: Conspectus F1); in other cases they seem to thrust their ram heads at the battlements (Appendix: Conspectus F2). This latter version appears in Sorrell's and Le Grange's reconstructions of the siege of Lachish (Figs 9, 11); it is adapted in principle by Bird and Hook – therefore the excessive height of the ramp.27 In Hook's reconstruction (P3, Fig. 4), the most recent one, the plan and elevation of gate and city wall conform to the architectural evidence of the site – except for the very elaborate battlements which closely resemble Sorrell's drawing. The height and shape of the ramp, extending only to the tower and narrowing towards its base, contradict the archaeological evidence. Denkinger's (P4, Fig. 5) representation of the architecture agrees with the archaeological information available on the site. Evidence is missing only for the tower at the far end and the adjoining 90° turn of the fortifications, yet the topography of the site seems to suggest such a trace of the city wall.

Reconstruction: comparable archaeological data
The use of siege-engines can be inferred from the archaeological evidence: the position of tunnels and saps as well as the measures taken at their end underneath the ramp can only be explained as operations aiming at overturning one of the attackers' siege towers. The sudden collapse of restricted parts of the ramp surface, however, would not present a serious obstacle to an infantry attack. On the strength of these arguments, siege-engines on the ramp were introduced into the reconstructions. Neither at Paphos nor anywhere else do remains of such engines survive,28 but Assyrian reliefs provide a variety of models (Appendix: Conspectus G2).

Bird's (P2, Fig. 3) machines with their box-like shape with prominently marked corner-beams betray only faint echoes of Assyrian models; their ram heads, looking somehow like oversized pencils, lack the usual metal sheeting.29 Hook's (P3, Fig. 4) battering ram is clearly modelled on certain Assyrian machines (Appendix: Conspectus G2), but the position of the counter-siege mines makes it very unlikely that only a single machine was employed. Denkinger (P4, Fig. 5), on the other hand, draws four battering rams which could have found space on the ramp and in front of the Gate. His massive siege-engines are constructed of small plates, a version that appears on Assyrian reliefs (Appendix: Conspectus G3); these machines were obviously made of 'pre-fabricated segments for easy dismantling and reassembling'.30 Their towers appear rather large and fairly overcrowded with soldiers.

The camp in the background, drawn by Sorrell (P1, Fig. 2) and repeated by Bird (P2, Fig. 3), derives from representations of Assyrian army camps (Appendix: Conspectus H) and may thus convey a touch of authenticity.

Reconstruction: the role of imagination
The free imagination of both artists and archaeologists plays a considerable role in all reconstruction drawing, especially in recreating actions. One especially important act of imagination is the choice of over-all perspective: it emphasizes certain points of view. Crucial was Sorrell's change from the attackers' view, usual in Assyrian art, to the outlook of the defenders. He possibly deemed this necessary to show the mining operations, but one is tempted to ask whether it also reveals subconscious partisanship for the Greeks fighting the Persian army.

Bird's (P2, Fig. 3) reconstruction basically retains the perspective of Sorrell, while Hook (P3, Fig. 4) introduces a new compositional axis – still retaining the defenders' outlook but obtaining a different, if more restricted view of the attackers' operations. Denkinger (P4, Fig. 5) exchanges the bird's eye perspective for a point of view almost from ground level. This choice enables him to combine factual excavation records (the stratigraphic drawing of Section B) with elements of
reconstruction and imagination – in this way making it easier to understand the character of the mining operations.

A different case of emphasis by imagination is represented by Sorrell’s drawing of lighting the wooden scaffolding inside the ramp (P1a; Fig. 8). The vivid scene tends to exaggerate the number and structural role of mud-brick pillars – not more than four pillars are recorded at the end of the tunnels. But this exaggeration strongly emphasizes the tense atmosphere in these siege tunnels.

In other cases, objects can set the imagination to work. We possess no direct evidence for the numbers and types of troops deployed by the Persian army against Paphos. Yet the numerous finds of bronze and iron weapons, 229 arrow heads and 253 spear points, testify to a massive exchange of fire during the operations. Sorrell (P1, Fig. 2) consequently shows sufficient archers on both sides; the Assyrian bowmen correctly use the cover of their siege-shields. On the contrary, Bird (P2, Fig. 3) represents almost all fighting troops on both sides as spearmen, except for one or two figures on top of the tower – a choice which does not tally with the find evidence.

The same applies to Hook’s (P3, Fig. 4) drawing in which the spearmen also hide in a rather unusual way behind siege-shields. Denkinger (P4, Fig. 5) again shows a sufficient number of archers on both sides, combined with attacking spearmen. These appear in dense, massed formations – intended to render the impact of the Persian assault.

The addition of stone throwers amongst the defenders is indicated by the 464 stone missiles found (320 of those in the actual siege context). Stone throwers thus appear on gate bastions and tower in Hook (P3) and in Denkinger (P4). This type of defender is attested, inter alia, in Assyrian reliefs (Appendix: Conspectus J) and in the frieze of the Heroon of Trysa. The find spots of these missiles also prove that the attackers had indeed moved up very closely to the walls, as shown on all four drawings, and entered the gate court.

Yet there are also free flights of imagination, such as the donkeys carrying earth and stones through the siege tunnels. Introduced by Sorrell (P1), the motif proved irresistible for Bird (P2) and Hook (P3). But these poor animals flatly contradict the evidence: loaded donkeys could never have passed the narrower parts of these underground passages.

Reconstruction: problems of reliability

The siege of Paphos may seem an event of narrowly circumscribed importance. But our brief discussion of its various reconstructions illustrates some of the problems posed by reconstruction drawing in archaeology in general.

In the study of the ancient world, visual reconstruction looks back upon a long tradition, closely linked with the rediscovery of Antiquity. One of its prominent aspects is the reconstitution of ancient buildings – the domain of architects since Fischer von Erlach or Stuart and Revett. In schools of Greek and Roman architecture like that of F. Krischen, the drawing of reconstructed buildings developed into a fine art. The recreation of historical scenes and events in painting and drawing represents another equally important aspect. After its heyday in the 19th-century schools of historical painting, it had an unexpected and astonishing revival in the late 20th century – a tendency intensified to no small degree by both the efficiency of CAD methods and publishers’ demands.

The ever-increasing use of reconstructions, partly based on very questionable evidence, tends to be justified as a way to make the public understand antiquity and history better. But the proliferation of images also threatens to turn the Past for the general public into a Disneyland peopled by cinema figures. Benefits and inherent dangers of this situation cannot be discussed in this context, but one question must be addressed briefly: how far are such visual reconstructions reliable as historical documents?

Images have a subtle yet powerful impact – they suggest that reconstructions are a kind of visual ‘re-enactments of past experience’, to use R.G. Collingwood’s persuasive formula. But there are objections to such an assumption. Pictorial reconstruction of past events rests on a delicate balance of observation and imagination which cannot be described adequately in terms of ‘fact’ and ‘fiction’. Many archaeological and historical data, considered as ‘facts’ upon which to base visual reconstructions, turn out on closer scrutiny to be nothing but re-enactments of past experience themselves.

Seen from this basic point of method, the question of historical reliability of the various reconstructions of the Paphos siege cannot be separated from the problem of factual reliability of the Assyrian reliefs. They represent the only parallel information available, but this information already constitutes an Assyrian interpretation of events. The rigid pictorial conventions are obvious: the want of perspective is as undeniable as the repetitive and schematic character of the drawing. The difficulties arising out of these formal constraints of visual representation are demonstrated by the debate over the reconstructions of the siege of Lachish (Figs 10, 11). Here opinions differ sharply: while D. Ussishkin assumes that the reliefs ‘attempted to portray a realistic view of the city’, other scholars contradict such an interpretation.

As regards Paphos, we can accept the drawings of the siege as attempts at visual re-enactment of a past event. The critical discussion of these reconstructions acts as a positive stimulus, forcing archaeologists, and especially excavators, to reconsider their own interpretations and conclusions. But the Past that the artists recreate blends various levels of information and imagination, and can never be used as a reliable pictorial source in historical reconstruction.
Appendix: Conspectus of selected pictorial elements representing siege operations on Assyrian reliefs in the British Museum

A1 Ramps constructed for the use of siege-engines
- Nimrud, palace of Tiglath-Pileser III (745–727 B.C.): Barnett-Falkner 1962, 12 (Relief 13), BM 118902, pl. 34; 14 (Relief 17) pl. 32.

A2 Soldiers tunnelling underneath the walls from outside
- Nineveh, part of frieze from the palace of Ashurbanipal (669–631 B.C.): Barnett 1976, 40 pl. 17a (Slab 3), BM 124931, ‘Susiana Room’; 40 pl. 21, Room F (Slab 15) (drawing); 47 pl. 36 (Slab 17), BM 124928 (cf. Reade 1998, 84 fig. 101, 87 fig. 104).

B Siege of Lachish

C Transport of stones:
- by men
- on a cart

D Siege-engine in front of gate

E Constructive elements of ramps:
- use of trees and brushwood
- surface of wooden logs

F1 Rams attacking lower parts of city walls
- Nineveh, palace of Sennacherib (705–681 B.C): Barnett, Bleibtreu and Turner 1998, i. 101–5, ii. pls 322–52; especially pl. 328 (no. 430a), pl. 329 (no. 430c), pl. 330, pl. 331, pls 333 (nos 430c–432c) BM 124906-07, pl. 335 (no. 431b) (drawing), pls 349–50 (no 429c) BM 124905, (no. 430c) BM 124906, pl. 351 (no. 430c) (detail), (no. 431c) BM 124907.

F2 Rams attacking battlements

G1 Types of siege-engines
- In general see above 1a and 1b (cf. Yadin 1963, 314–15).

G2 - similar to P3 (Fig. 4)

G3 - similar to P4 (Fig. 5)

H Fortified camps of the Assyrian army
- Gates of Shalmaneser III (859–824 B.C), embossed bronze, BM 124651-63:

Appendix cont. on next page
Appendix cont. Conspectus of selected pictorial elements representing siege operations on Assyrian reliefs in the British Museum

<table>
<thead>
<tr>
<th>J</th>
<th>Spearers with round or rectangular shield and/or bowmen accompanied by spearmen with siege-shield (see Yadin 1963, 293-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Nineveh, palace of Sennacherib (705–681 bc): Barnett, Bleibtreu and Turner 1998, i. 75 (no. 227a+b), ii. 151; i. 77 (no. 240a+b), ii. pls 168+9; ‘Lachish Room’. i. 101–5, ii. pls 349–351 (nos 429c, 430c, 431c) (BM 124905–7).</td>
</tr>
<tr>
<td>15</td>
<td>The sinking of countermines into enemy mines, discovered by the excavators originally assumed that the wall had been built during the siege.</td>
</tr>
<tr>
<td>14</td>
<td>Whether the collapse of the ramp is not preserved. It is difficult to decide whether ‘concrete caps’ observed on the top of the ramp (Iliffe and Mitford 1951, 56; Iliffe and Mitford 1952, 33) were part of the ‘mantle of the ramp’, as seen at Lachish (Usishkin 1978, 71; Usishkin 2004, ii. 741).</td>
</tr>
<tr>
<td>12</td>
<td>Not as ammunition for stone-throwing engines, as supposed for a time; e.g. Maier 1974, 30–1; Taton-Brown 1878, 68.</td>
</tr>
<tr>
<td>11</td>
<td>Similar tactics were adapted by the Plataeans during the siege of Barke (Her. iv. 200. 2; Garlan 1974, 176).</td>
</tr>
<tr>
<td>9</td>
<td>Not as ammunition for stone-throwing engines, as supposed for a time; e.g. Maier 1974, 30–1; Taton-Brown 1878, 68.</td>
</tr>
<tr>
<td>8</td>
<td>The destroyed cult place represented a sanctuary of traditional type, containing numerous statues and ex-votos in an open air temenos: see Taton-Brown 1994, 76.</td>
</tr>
<tr>
<td>7</td>
<td>As the name Palaepaphos does not appear before the end of the 4th century bc, Paphos is used throughout the text.</td>
</tr>
<tr>
<td>6</td>
<td>Spherical stone balls, flattened on one face’ are mentioned already when the defenders drew away ramp material through a tunnel: Thucydidii ii. 75. 6–7; Lawrence 1979, 41.</td>
</tr>
<tr>
<td>5</td>
<td>As the name Palaepaphos does not appear before the end of the 4th century bc, Paphos is used throughout the text.</td>
</tr>
<tr>
<td>4</td>
<td>Maier 2008.</td>
</tr>
<tr>
<td>3</td>
<td>‘Spherical stone balls, flattened on one face’ are mentioned already when the defenders drew away ramp material through a tunnel: Thucydidii ii. 75. 6–7; Lawrence 1979, 41.</td>
</tr>
<tr>
<td>2</td>
<td>As the name Palaepaphos does not appear before the end of the 4th century bc, Paphos is used throughout the text.</td>
</tr>
<tr>
<td>1</td>
<td>Not as ammunition for stone-throwing engines, as supposed for a time; e.g. Maier 1974, 30–1; Taton-Brown 1878, 68.</td>
</tr>
</tbody>
</table>

Notes

19 Lloyd 1984, 186.

20 Benndorf and Niemann 1889, pls 12, 13; Eichler 1950, pls 18, 19; Campbell 2005, 15, 61; see also Lawrence 1979, 21.

21 Admittedly, the excavators originally assumed that the wall had been built during the siege.

23 For the estimated height of city wall and ramp see below.

24 Already in ILN 1953, 614: ‘rubble sliced with the stems and roots of trees’.

25 During the siege wooden posts and frames were employed only in shoring-up the cavities at the end of the tunnels. All other wood and tree fragments were found in an area close to the Revetment Wall, disturbed in the Classical period during the rebuilding of the fortifications. Other ramps were strengthened by woodwork, e.g. the Spartans’ ramp at Plataea in 429 which consisted of ‘wood and stones and earth’; its sides were shored up with a wooden structure (Thuc. ii. 75. 1–2), or the Massada ramp: Yadin 1967, 226.

27 See below n. 34. It seems questionable to interpret these relief scenes as denoting a special Assyrian reconstruction of the siege of Lachish tactics (Usishkin 2004, ii. 740–1: the engines with curious spear-like battering rams built as machines for attacking the ‘balconies at the top of the wall and at warriors manning them’).

28 See Usishkin 2004, ii. 765.

29 Ram head of c. 440 bc from Olympia: Kunze 1956, 75, fig. 30, pls 40, 41.

30 Usishkin 2004, ii. 765. This seems to apply also to Hook’s siege-engine.

31 Benndorf and Niemann 1889, pl. 12; Eichler 1950, pl. 18.

34 See chart below.

Reconstructions of the siege of Lachish

<table>
<thead>
<tr>
<th>Art</th>
<th>Description</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3</td>
<td>‘Sennacherib’s main siege ramp, a reconstruction’</td>
<td>Usishkin 1978, 71–3 fig. 21</td>
</tr>
<tr>
<td>L5</td>
<td>‘Tentative re-assemblage of slab 6–9, with selective restorations including the now-missing citadel’</td>
<td>Uehlinger 2003, 269 fig. 7.</td>
</tr>
</tbody>
</table>
Bibliography

Uehlinger Ch. 2003, ‘Clio a world of pictures – Another look at the Lachish reliefs from Sennacherib’s Southwest Palace at Nineveh, in ed. L.L. Grabbe, *‘Like a bird in a cage’. The invasion of Sennacherib in 701 BC’*. Journal of the Study of the Old Testament Supplement series 363 (Sheffield), 221–305.
Figure 2 Reconstruction of the Paphos siege by Alan Sorrell (P1). © Estate of Alan Sorrell

Figure 3 Reconstruction of the Paphos siege by Susan Bird (P2)
Figure 4
Reconstruction of the Paphos siege by Adam Hook (P3). Image from Ancient Siege Warfare, © Osprey Publishing Ltd.
Figure 5 Reconstruction of the Paphos siege by Jörg Denkinger (P4)
Figure 6 North East Gate, city wall and siege works on Site KA at Paphos

Figure 7 The Persian siege ramp at Paphos covering berm, ditch and glacis

Figure 8 'Firing the cauldron at the end of a tunnel'; reconstruction by Alan Sorrell (P1a). © Estate of Alan Sorrell
Figure 9 The siege of Lachish. Relief from Room XXXVI, Southwest Palace, Nineveh
Figure 11: Sennacherib's main siege ramp at Lachish, reconstruction by Gert Le Grange (L3). Courtesy of the Institute of Archaeology, Tel Aviv University.